Partial characterizations of clique-perfect and coordinated graphs: superclasses of triangle-free graphs
نویسندگان
چکیده
A graph is clique-perfect if the cardinality of a maximum clique-independent set equals the cardinality of a minimum clique-transversal, for all its induced subgraphs. A graph G is coordinated if the chromatic number of the clique graph of H equals the maximum number of cliques of H with a common vertex, for every induced subgraph H of G. Coordinated graphs are a subclass of perfect graphs. The complete lists of minimal forbidden induced subgraphs for the classes of cliqueperfect and coordinated graphs are not known, but some partial characterizations have been obtained. In this paper, we characterize clique-perfect and coordinated graphs by minimal forbidden induced subgraphs when the graph is either paw-free or {gem,W4,bull}-free, two superclasses of triangle-free graphs.
منابع مشابه
Partial characterizations of clique-perfect graphs II: Diamond-free and Helly circular-arc graphs
A clique-transversal of a graph G is a subset of vertices that meets all the cliques of G. A clique-independent set is a collection of pairwise vertex-disjoint cliques. A graph G is clique-perfect if the sizes of a minimum clique-transversal and a maximum clique-independent set are equal for every induced subgraph ofG. The list of minimal forbidden induced subgraphs for the class of clique-perf...
متن کاملPartial characterizations of clique-perfect graphs I: Subclasses of claw-free graphs
A clique-transversal of a graph G is a subset of vertices that meets all the cliques of G. A clique-independent set is a collection of pairwise vertex-disjoint cliques. The clique-transversal number and clique-independence number of G are the sizes of a minimum clique-transversal and a maximum clique-independent set of G, respectively. A graph G is clique-perfect if these two numbers are equal ...
متن کاملOn clique-perfect and K-perfect graphs
A graph G is clique-perfect if the cardinality of a maximum cliqueindependent set of H is equal to the cardinality of a minimum cliquetransversal of H, for every induced subgraph H of G. When equality holds for every clique subgraph of G, the graph is c–clique-perfect. A graph G is K-perfect when its clique graph K(G) is perfect. In this work, relations are described among the classes of perfec...
متن کاملGame-perfect graphs
A graph coloring game introduced by Bodlaender [3] as coloring construction game is the following. Two players, Alice and Bob, alternately color vertices of a given graph G with a color from a given color set C, so that adjacent vertices receive distinct colors. Alice has the first move. The game ends if no move is possible any more. Alice wins if every vertex of G is colored at the end, otherw...
متن کاملCohen-Macaulay $r$-partite graphs with minimal clique cover
In this paper, we give some necessary conditions for an $r$-partite graph such that the edge ring of the graph is Cohen-Macaulay. It is proved that if there exists a cover of an $r$-partite Cohen-Macaulay graph by disjoint cliques of size $r$, then such a cover is unique.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Electronic Notes in Discrete Mathematics
دوره 30 شماره
صفحات -
تاریخ انتشار 2008